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Abstract
Stochastic, especially simulation, occasionally could be 
found in different geological calculations, mostly as the 
most advanced mapping method. Its main attribute is 
description of uncertainties that are inherent not only 
to any geological mapping dataset but also to any vol-
umetric or probability calculation. Here are presented 
uncertainties in all three cases – mapping, volume cal-
culation and probability calculation – and reasons why 
and when to use stochastic in them. The stochastic, 
and consequently simulation, is a recommended tool 
in case of a low number of data (<15 inputs) or large 
dataset (>40 inputs), but in both cases, the descriptive 
statistics needs to be known and is reliable. Almost the 
same could be applied in volumetric calculation, but 
the success of stochastic in probability calculation de-
pends on large datasets, with 15 or more inputs.

Key words: simulations, number of input data, stocha-
stic mapping, volume calculation, probability, Croatia
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Izvleček
Stohastiko, zlasti simulacije, lahko občasno najdemo 
pri različnih računih, zlasti pri najsodobnejših metodah 
kartiranja. Njihova poglavitna značilnost je opisovanje 
negotovosti, ki so lastne sleherni zbirki podatkov geolo-
škega kartiranja, pa tudi slehernemu volumetrijskemu 
ali verjetnostnemu računanju. Tu predstavljamo nego-
tovosti v vseh teh treh primerih – pri kartiranju, računu 
prostornin in računu verjetnosti, ter načine, čemu in 
kdaj uporabljati pri tem stohastiko. Stohastični pristop 
in posledično simulacijo je priporočljivo uporablja-
ti v primeru majhnega števila podatkov (manj od 15) 
ali velike datoteke (nad 40 inputov), vendar mora biti 
v obeh primerih opisna statistika znana in zanesljiva. 
Skoraj isto velja tudi za volumetrijo, medtem ko lahko 
uporabljamo stohastiko v računu verjetnosti ugodnega 
izida samo v primeru večjih datotek s 15 inputi ali več.

Ključne besede: simulacije, število podatkov, stohasti-
ka, kartiranje, računanje prostornine, verjetnost, Hrva-
ška
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bution, naturally or after transformation. Ex-
amples of such variables are porosity, depth, 
thickness or permeability.
There are several subsurface structures in the 
Croatian part of the Pannonian Basin System an-
alysed by stochastic methods. The Kloštar struc-
ture (and hydrocarbon field) is the most Croa-
tian geological structure analysed by stochastic 
geostatistical algorithms till now. An example 
of how to apply SGS in subsurface mapping of 
porosity, depth and thickness can be given as a 
set of maps taken from Zelenika and Malvić [5]. 
The data were collected from a reservoir of 
Lower Pontian age in the Kloštar field, locat-
ed in the western part of the Sava Depression. 
Simulation used present-day depth, thickness, 
and locations of areas with higher porosity to 
successfully reconstruct [5] paleo-depositional 
environments and the distribution of different 
lithotypes of turbidites (Figure 1).
However, sequential indicator simulation (SIS) 
is more specific and used only when mapping 
is based on cut-off (threshold) values defined 
for the selected variable. Such an application is 
most often used in lithofacies mapping, when 
cut-off selected for porosity or thickness, di-
rectly or indirectly, indicates lateral changes in 
lithofacies. Such lateral changes are one of the 
main properties of turbidite arenite lithofacies 
in Neogene, Croatian part of the Pannonian Ba-
sin System, developed due to paleotopography, 
current directions and different lateral densities 
of turbidite. As results in all Croatian hydrocar-
bon fields reservoir sandstones laterally gradu-
ally are changed into marly sandstones, sandy 
marls, clayey marls and, eventually, marls.
One of indicator applications in the Croatian 
Pannonian Basin System (CPBS) Neogene litho-
stratigraphic units had been published for Low-
er Pontian, the Kloštar Ivanić Formation in the 
Klošar Field (Figures 2 and 3). Porosity and 
thickness had been mapped using the mapping 
indicators and interpreted regarding probabili-
ty to reach at least the selected porosity value. 
Resulting maps indicated depositional channel 
of sandstone, transitional lithofacies to marls, 
transport direction of turbidites and role of re-
gional fault [6,7].

Introduction

Stochastic simulation or Gaussian simulation 
(sequential or indicator) is a special geosta-
tistical method based on different algorithms 
compared to deterministic interpolation meth-
ods such as Kriging and Cokriging [1–3]. Dif-
ferences are a result of extensions introduced 
in the Kriging algorithm that can have advan-
tages or disadvantages, due to introduction of 
uncertainties in estimations. Consequently, the 
selection between Kriging- and Gaussian simu-
lation-based algorithms is very important and 
asks for experienced professionals [4].
The most common property of simulation is 
calculation of numerous realisations (values) 
for each cell in grid (excluded are hard data 
in conditional ones). The requirement is input 
dataset characterised using normal distribu-
tion. The total set of realisations is character-
ised with uncertainties, derived from the size 
of dataset, variogram model and measurement 
errors. As input dataset, such an error is also 
characterised using normal distribution.
The simulation obviously calculates an enor-
mous number of new grid values (103 times 
larger than the input dataset). Sometimes, it is 
used for artificially increasing of dataset, com-
bining simulated and input values. As a conse-
quence, descriptive statistics and histogram for 
analysed data can be easily and clearly calcu-
lated. In the grid of 50 × 50 cells, in 100 real-
isations, totally 250000 values are calculated. 
Hence, the input dataset of usually 10–20 hard 
data is enlarged in the scale of 104. Moreover, 
numerous realisations give as outcomes of nu-
merous maps. All of them are equally probable, 
and some of them can be selected as “represen-
tative”, but always at least three. Such a selec-
tion is done based on the order of calculation, 
random sampling, calculation of total map cells’ 
values, etc., but selection always needs to be 
unbiased. On contrary, if intention is given only 
to single map as an outcome, then Kriging or 
Cokriging methods are chosen as algorithms 
made just for such a purpose.
Simulations could be conditional and (rarely) 
unconditional and also Gaussian and (rarely) 
indicator. The sequential Gaussian simulation 
(SGS) could be applied to almost all geological 
variables characterised using Gaussian distri-
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Basics of stochastic simulation 
algorithm

The basic condition for performing SGS is (ap-
proximately) normal or Gaussian distribution 
of input data. Transformation into normality, if 
possible, is also allowed. Normal distribution is 
characterised using statistical properties such 
as expectation and standard deviation (m and σ2, 
respectively), which are basic conditions for 
calculation of uncertainty range in cells and for 
estimation of errors.

Figure 1: The first (left) and 100th (right) SGS realisation for porosity. The selection is based on the simple order of calculation. 
Taken from [5].

Figure 2: Direction of material transport during Lower Pontian, Kloštar Structure. Probability maps for porosity >19% (left) and 
>20% (right). Red indicates fault, and black dot indicates well. Taken from [7].

Figure 3: Direction of material transport during Lower 
Pontian, Kloštar Structure. Probability maps for 
thickness >13 m. Red indicates fault, and black dot 
indicates well. Taken from [5,7].
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Properties of input data, type of simulation 
and zero realisation
All data represented with point values are, so-
called, “hard data”, which means that they are 
always constant in space whatever outcome is 
presented. Consequently, such constants value-
in-place in simulation define it as “conditional 
simulation”, where are hard-data un-change-
able across the plane or space. It means that 
inputs will not change whenever simulation al-
gorithm is applied. In addition, there is another 
type of SGS called “unconditional simulation”. 
“Unconditional” means that input data are not 
treated as constants. It is a valid view because 
each grid is defined with numerous cells. Al-
most always each cell includes one or zero hard 
data. However, hard data are considered also as 
point data, i.e. infinity small point, compared 
with cells that in the 2D area are always much 
larger than single point. As a consequence, the 
so-called “hard-data” if moved through the cell 
area could easily change value. Consequently, it 
is why they cannot be considered as constants. 
Eventually, it is allowed to simulate new value 
into cells with “hard data”.
Whatever type is chosen, any simulation is 
based on the variogram model and Kriging in-
terpolation.
The single Kriging map represents determinis-
tic solution for input dataset and is called “zero 
(or Kriging) realisation”. Such a realisation has 
known mean value (expectation), standard de-
viation (m, σ2), Kriging variance (σK) and interval 
margins of simulated values (±3σ around m, i.e. 
probability of 99% to include all possibilities). 
Using this realisation, it is possible to perform 
required number of subsequent realisations for 
each simulated cell in the grid. As basic Kriging 
algorithm is very often used, Ordinary Kriging 
technique (Equation 1, taken from [3]), which is 
used in the Croatian geological mapping, is the 
most commonly used Kriging technique until 
now (e.g. [8]).

   (1)

Simulation
Normalised data, sometimes after transforma-
tion, with known N(m, σ) are used to simulate 
values into grid cells. Simulation is based on, so 
called, two methods of introducing “random-
ness”, which makes the entire process unbiased 
and repeatable (i.e. sequential).
The first randomness method is selection of es-
timated (simulated) cells inside the grid. When 
cells are selected, the value is calculated using 
Kriging (or Cokriging) on hard data. Previously 
estimated cells in each consequent selection are 
considered as new “hard data”, using the same 
variogram model as in the first simulation, but 
repeat the “zero realisation”. Hence, each esti-
mated cell is characterised with a new value 
and also with an uncertainty interval, wide ±3σ 
around expectation in that cell. Eventually, en-
tire realisation has its own variance calculation 
from “zero realization”. It is also known as Krig-
ing variance.
The second randomness method, i.e. introduc-
tion of stochastic into simulation for the second 
time, includes cell value estimation and is de-
pended on interval ±3σ, different for each cell. 
Random selection of any value from this inter-
val represents the final cell value in this reali-
sation. Each cell is also characterised using its 
own probability distribution function (PDF). 
This is why it is possible to calculate almost in-
finite number of equally probable realisations 
in one simulation.

Calculation of numerous realisations
Obviously, it is possible to calculate numerous 
realisations, which all have the same cell val-
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ues only in hard data locations. Of course, it is 
valid only if conditional simulation has been 
performed, which is the most common case in 
geological mapping. However, the main task is 
always selection of the most appropriate real-
isations, regarding researching goal, graphical 
looks and, sometimes, cross-validation. The 
main purpose of simulation is presentation of 
numerous possible solutions, but obviously 
dozens or hundreds of maps are impossible to 
present as a single outcome. Hence, there are 
several quick steps to check how reliable sim-
ulation results are and which number of real-
isation could be appropriate. It is summarised 
in Table 1.
There is a general opinion that 100 realisations 
in simulation represents a large enough num-
ber of solutions that stochastic is representa-
tive for quality input dataset. Such a large set 
of realisations need to be post-processed to 
reach several realisations that are the most 
common characteristic for analytical purpose 
and simulated space. Such selection techniques 
are called ranking. The ranked variable is usu-
ally cumulative summation of all cells in the 
observed realisation. For example, if porosity 
had been mapped in some layer or unit, all cell 
values in one realisation can be summed and 
give total porosity for the entire realisation. If 
there are 100 realisations, such summation can 
be repeated 100 times, one for each realisation. 
Eventually, an entire set of 100 realisations can 
be ranked from the lowest total porosity per re-
alisation (P0), through the median realisation 

(P50), to the highest ranked realisation (P100). 
“P” value defines how many realisations have 
lesser total score than the observed one, i.e. for 
the P0, there is 0% of lesser solutions, and for 
the P100, there is 100% realisations with a low 
total value.
However, such a method of ranking is not al-
ways possible to perform, because summation 
of cells across realisation would not result in 
a meaningful value. In such cases, especially 
when only a small number of realisations are 
performed (e.g. Table 1, the right-end column), 
some pure statistical techniques could be used. 
Selection of only the first and last realisations 
in sequence or each nth realisation or any num-
ber of realisations by the “random seed num-
ber” algorithm is allowed. Such a selection is 
usually applied when simulation includes only 
a small number of realisations (5 or 10), made 
from small datasets with the purpose of getting 
quick visual insight into areas with the largest 
uncertainties.
To summarise, each new realisation needs to 
fulfil two conditions: (a) order or simulated 
cells is defined completely randomly, i.e. “ran-
dom seed number generator” is applied and (b) 
consequently, number of “hard data” values in-
side variogram ellipsoid does not need be equal 
in the same cell and different realisations.

Table 1: Qualitative estimation of simulation reliability and recommended number of realisations.

Completely fulfilled Partially fulfilled Rarely (irregularly) 
or not at all fulfilled

Could variable be 
characterised with normal 

distribution?
Mostly (like porosity)

Sometimes (after 
transformation, like 

permeability)

Not sure; test is 
needed (variables like 

depth or thickness)

Could variable be ranked 
by map values?

Always (any realisation 
can be ranked 

according to their 
cumulative value)

- -

Which number of 
realisations represent 

real spatial uncertainties’ 
characteristic to data?

100 or more realisations 
could be calculated

10–99 realisations 
could be calculated

Less than 
10 realisations could 
be calculated (only 

quick insight)
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Stochastic derived from deterministic 
models

Stochastic and deterministic models are close-
ly connected. In fact, any deterministic model, 
map or equitation, is an accepted approxima-
tion of input dataset, characterised with “artifi-
cial certainty”. Geological deterministic models 
could be different, but mathematically, they are 
often purely numerical, such as calculation of 
probability of success (POS; e.g. [9–11]), volu-
metric calculation of structure (e.g. [12]) and 
graphical outcome like different deterministic 
maps (e.g. [13]). The last one is described in the 
previous chapter, and in the following are given 
models of probability and volumetric calcula-
tions.

Stochastic in geological risk or probability of 
success calculation
Deterministic models are just approximation 
of stochastic systems, where the variable prop-
erties are geologically and statistically known. 
However, increase in data always partially 
changes deterministic solution, like maps or 
statistics. It was proven, e.g. in the calculation of 
POS that a well-known deterministic model can 
be used for hydrocarbon discovery in plays and 
prospects in the Croatian offshore [11] or the 
CPBS [9]. Even such numerically simple multi-
plication could be partially described and mod-
ified with inclusion of stochastic (e.g. [14,15]).
This is why because calculation of such values 
can be a significant uncertainty process, even 
if it is applied in geological areas covered with 
published probability tables for geological 
categories such as existence of trap, reservoir, 
source rocks, effective migration of fluids and 
preservation of hydrocarbons in reservoir. Con-
sequently, Equation 1 is used:

POS = p(t) x p(r) x p(s) x p(m) x p(p). (1)

Here, POS is the geological probability, p(t) the 
probability for trap existence, p(r) the reser-
voir existence, p(s) the source rock existence, 
p(m)  the probability for effective migration 
and p(p) the probability that hydrocarbons are 
preserved.

Although raised in hydrocarbon geology, this 
methodology is easily modified in other geo-
logical disciplines, like storage of CO2 in the 
subsurface [16]. However, it was proven [15] 
that at least three (sub)categories could be 
represented by stochastic simulation. Porosi-
ty subcategory maps make possible to directly 
calculate values such as minimum, median and 
maximum realisations. Hydrocarbon shows and 
quality of cap rocks are descriptive variables, 
but often they can be expressed as percentage. 
Hence, descriptive variables can be transferred 
into indicators or real number. For example, de-
tection of new gas in the layer can be observed 
if concentration is >10% (indicator 0 or 1). 
The measured value of 15% can indicate that 
seal rocks are not completely impermeable, i.e. 
probability of sealing is 0.75. Such a probabili-
ty can be lowered for any critical value of new 
gas (like 40% is 0.50, 60% is 0.25, 80% is 0.05), 
which is determined experimentally in-site or 
in laboratory. This showed that several (sub)
categories in POS calculation can be described 
with several possible values, which is stochastic 
definition of an event.

Stochastic in numerical integration of 
structures
Stochastic is a property of numerical calculation 
of volumes of geological structures. This is the 
most often used method for calculation of (sub)
surface structures. It is based on 2D approx-
imation of 3D space. An object with volume V 
whose boundaries extend from x = a to x = b is 
defined by the definite integral (Equation 2) as 
follows:

𝑉𝑉 = ∫ 𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
          (2). . (2)

The area A(x) of the section made by a plane 
parallel to the YZ plane has to be known at ev-
ery point. In practice, the integrand A is defined 
by the table of values of the definite integral. It 
can be obtained by several formulas, including 
the areas (isopachs) measured by the mechani-
cal device called planimeter. Two such formulas 
are the most often used in geology –trapezoidal 
and Simpson’s rule (e.g. [17–19,12]).
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Trapezoidal rule derived name from the first 
approximation where any integral is represent-
ed along a straight line, which then with the in-
terval [a,b] forms the trapezium (Figure 4a).
Trapezoidal shape is derived from the first ap-
proximation, i.e. straight line, which then with 
interval [a,b] and axis X forms the trapezium. 
Hence, the general approximation of trapezoi-
dal formula (Equation 3) depends on a number 
of segments (Figure 4b):

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∑ ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
≈ 1

2 ∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1
)[𝑓𝑓(𝑥𝑥𝑖𝑖−1) + 𝑓𝑓(𝑥𝑥𝑖𝑖)]         

 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∑ ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
≈ 1

2 ∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1
)[𝑓𝑓(𝑥𝑥𝑖𝑖−1) + 𝑓𝑓(𝑥𝑥𝑖𝑖)]          (3)

 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∑ ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
≈ 1

2 ∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1
)[𝑓𝑓(𝑥𝑥𝑖𝑖−1) + 𝑓𝑓(𝑥𝑥𝑖𝑖)]         .

This is valid for any number of equally dis-
tanced subintervals, i.e. sections or isopachs 
(i.e. subintervals+1), which have uniform parti-
tion a = x0 < x1 < ... < xn-1 < xn = b, i.e. subinterval 

ℎ = 𝑏𝑏 − 𝑎𝑎
𝑛𝑛  . For example, such a formula for 

5 sections (or 4 subintervals) would be as 
(Equation 4) follows:

𝑉𝑉𝑇𝑇 = ℎ
2 (𝑎𝑎0 + 2𝑎𝑎1 + 2𝑎𝑎2 + 2𝑎𝑎3 + 𝑎𝑎4)        (4)

Simpson’s rule is based on integral ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
  

using approximation of y = f(x) by a parabola 
(Figure 5a), i.e. polynomial of second degree 
that passes through the points (a, f(a)), (b,f(b)), 

(c,f(c)), where 𝑐𝑐 = 1
2 (𝑎𝑎 + 𝑏𝑏) . The final equation 

(Figure 5b) is the following:

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
≈ ℎ

3 [𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏) + 2 ∑ 𝑓𝑓(𝑥𝑥2𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1
+ 4 ∑ 𝑓𝑓(𝑥𝑥2𝑖𝑖−1)

𝑛𝑛

𝑖𝑖=1
]  

 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
≈ ℎ

3 [𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏) + 2 ∑ 𝑓𝑓(𝑥𝑥2𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1
+ 4 ∑ 𝑓𝑓(𝑥𝑥2𝑖𝑖−1)

𝑛𝑛

𝑖𝑖=1
]  . 

(5)

In practice, again for 5 sections (or 4 subinter-
vals), such a formula becomes as given in the 
following:

𝑉𝑉𝑆𝑆 =
ℎ
3 (𝑎𝑎0 + 4𝑎𝑎1 + 2𝑎𝑎2 + 4𝑎𝑎3 + 𝑎𝑎4) . (6)

Application of these rules is not unique, but 
some strong recommendations are raised from 
experience. The Simpson’s rule starts approx-
imation with a higher polynomial (2nd order 
vs. 1st order in trapezium), and the approxima-
tion, with numerous sections, is always better. 
However, there is not strong definition of “nu-

Figure 4: The trapezoidal rule with one (a) and five (b) subintervals  
(taken from http://www. uio.no/studier/emner/matnat/math/MAT-INF 11 0 0/h09ikompendiet/chap1 2.pdf; [12]).
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merous sections”. For 5 or less sections, almost 
always simpler trapezoidal rule will lead to 
better results. For more sections, the Simpson’s 
rule has obvious advantages. Moreover, the 
Simpson’s rule has two versions, resulting from 
practice. One version, for paired number of sub-
intervals, has been proven mathematically and 
is given here. However also, there is version for 
even number of subintervals used in Croatian 
reservoir geology practice for decades ([20]). 
If in Equation 7 one more subinterval is added, 
then there will be even number of subintervals 
and the equation will be as follows:

𝑉𝑉𝑆𝑆 =
ℎ
3 (𝑎𝑎0 + 2𝑎𝑎1 + 4𝑎𝑎2 + 2𝑎𝑎3 + 4𝑎𝑎4 + 2𝑎𝑎5) 

 𝑉𝑉𝑆𝑆 =
ℎ
3 (𝑎𝑎0 + 2𝑎𝑎1 + 4𝑎𝑎2 + 2𝑎𝑎3 + 4𝑎𝑎4 + 2𝑎𝑎5) . 

(7)

Discussion, recommendations and 
conclusions

Stochastic and deterministic models are close-
ly entangled. In fact, any deterministic model, 
map or equitation, is only an accepted approxi-
mation of natural input dataset or “artificial cer-
tainty”. Geological deterministic models could 
be different, but mathematically, they could be 
divided into (a) purely numerical, like calcula-
tion of probability of success or volumetric cal-
culation of geological structure or (b) graphical 
outcome like different deterministic maps.

Regarding mapping, SIS is probably the most 
advanced simulation technique that uses orig-
inal and indicator data for variogram calcula-
tion and mapping. Moreover, if Gaussian and 
indicator simulations are compared, indicator 
maps sometimes represent more uniform dis-
tribution, i.e. differences among realisations 
are not so large as in Gaussian ones (e.g. [5]). 
It is a result of variance of indicator variables, 
and consequently, indicator simulation gives 
more uniform distribution of cell values. Gen-
erally, if indicators are used, the larger number 
of cut-offs results in larger reduction of in-class 
“noise” [21]. Eventually, the main purpose of 
Gaussian simulation is mapping of real values, 
but the main intention of indicator simulations 
is probability mapping, i.e. mapping assuming 
that some cells will have values larger than 
cut-off. In both cases, it would partially remove 
the so called “bull’s-eye” effect, a very strong 
feature sometimes observed in deterministic 
maps. Removal could be even stronger if indi-
cators are used.
Stochastic is an inherent property that is also 
used for other calculations in numerical geolo-
gy, such as probability of success and volumet-
ric calculation, which are previously described. 
Introduction of stochastic in such calculations 
gives some degree of freedom in selection of 
categories or fine-tuning of geological models. 
Consequently, if stochastic is applied, the algo-
rithms for POS calculation or volumetric cal-
culation need to be theoretically well known. 
Any decision to introduce stochastic (or not) 

Figure 5: The Simpson’s rule with two (a) and six (b) subintervals  
(taken from http://www. uio.no/studier/emner/matnat/math/MAT-INF 11 0 0/h09ikompendiet/chap1 2.pdf; [12]).
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is based on the type of analyses and number of 
data (Figure 6).
As general recommendation, when to apply sto-
chastic could be outlined (Figure 6) here:
1. The strongest criterion is number of input 

data. Although each dataset includes un-
certainties, they are the highest in smaller 
datasets. On contrary, in large datasets, such 
uncertainties could be easily and precisely 
calculated.

2. Consequently, it means that in “medi-
um-sized” datasets, stochastic could be de-
scribed, but it does not play an important 
role in the analytical procedure. Such “medi-
um-sized” datasets are still too small that un-

certainties cannot be precisely numerically 
calculated (almost as constant) and too large 
that the representative statistics cannot be 
calculated.

3. This is why stochastic is recommended 
for “small” datasets with <15 inputs or for 
“large” ones with >40 points.

4. The calculation of probability of success for 
any geological category deviates from such 
recommendations, because it is purely a nu-
merical method, where for <15 points, the 
porosity cannot be stochastically mapped, as 
well as other subcategories cannot be reli-
ably estimated with several solutions.

Figure 6: Decision tree for introducing stochastic in geological mapping and numerical calculations, based on the type of 
method and number of input data
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General recommendation for any kind of in-
put dataset, regarding each of three analysed 
approaches, is clearly summarised in Figure 6, 
which represents “all-purpose” table that could 
be applied in all research that include stochas-
tic in geology.
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